Becker, Markus M.

Formation mechanisms of striations in a filamentary dielectric barrier discharge in atmospheric pressure argon - dataset

The results of the modelling of a filamentary dielectric barrier discharge (DBD) in argon at atmospheric pressure obtained using a time-dependent and spatially two-dimensional fluid-Poisson model in axisymmetric geometry are provided in this dataset. The model was employed to investigate the formation mechanisms of the striations along the discharge channel in a one-sided DBD arrangement with a 1.5 mm gap powered by a sinusoidal high voltage applied at the metal electrode.

Introduction and verification of FEDM, an open-source FEniCS-based discharge modelling code - dataset

The dataset contains the data presented in the paper introducing the FEDM (Finite Element Discharge Modelling) code. The FEDM code was developed using the open-source computing platform FEniCS (https://fenicsproject.org). Building on FEniCS, the FEDM code utilises the finite element method to solve partial differential equations. It extends FEniCS with features that allow the automated implementation and numerical solution of fully-coupled fluid-Poisson models, including an arbitrary number of particle balance equations.

Exploring the mechanisms leading to diffuse and filamentary modes in dielectric barrier discharges in N2 with N2O admixtures - Dataset

The effects of nitrous oxide (N2O) in nitrogen (N2) on the development and morphology of sine-driven dielectric barrier discharges in a single-filament arrangement were studied. Detailed insight in the characteristics of the discharge and its development were obtained from electrical measurements combined with ICCD and streak camera recordings as well as numerical modelling. A miniaturised atmospheric pressure Townsend discharge (APTD) could be generated for admixtures up to 5vol% N2O in N2 although N2O is an efficient collisional quencher of metastable nitrogen molecules.

Upscaling from single- to multi-filament dielectric barrier discharges in pulsed operation - Dataset

A study on the scalability of discharge characteristics of a single-filament dielectric barrier discharge (DBD) to a spatially one-dimensional multi-filament arrangement driven by the same high-voltage (HV) pulses was performed for a gas mixture of 0.1 vol% O2 in N2 at 1 bar. Both arrangements feature a 1 mm gap with dielectric-covered electrodes featuring two hemispherical alumina caps for the single-filament and two parallel alumina-tubes for the multi-filament arrangement.

Extended reaction kinetics model for non-thermal argon plasmas and its test against experimental data - Dataset

Modelling results obtained using an extended reaction kinetics model (RKM) suitable for the analysis of weakly ionised, non-thermal argon plasmas with gas temperatures around 300K at sub-atmospheric and atmospheric pressures are presented. Modelling was performed by means of a time- and space-dependent fluid model for two different dielectric barrier discharge configurations as well as for a micro-scaled atmospheric-pressure plasma jet setup. The results are also compared with measurements, as well as with modelling data obtained by use of a previously established 15-species RKM.

Impact of the electrode proximity on the streamer breakdown and development of pulsed dielectric barrier discharges - Dataset

Presented data was obtained from the analysis of the impact of the electrode proximity on the streamer breakdown and development of pulsed-driven dielectric barrier discharges (DBDs) in a singlefilament arrangement in a gas mixture of 0.1 vol% O2 in N2 at 0.6 bar and 1.0 bar. The gap distance was varied from 0.5 mm to 1.5 mm, and the applied voltage was adapted correspondingly to create comparable breakdown conditions in the gap. Fast electrical measurements provided insight into discharge characteristics such as the transferred charge and consumed energy.

Influence of surface parameters on dielectric-barrier discharges in argon at subatmospheric pressure - dataset

The provided data describe the discharge current in DBD obtained by fluid modelling using different values of for the secondary electron emission coefficient γ and and the relative permittivity of the dielectric barrier εr in comparison with the measured current at a pressure of 100 mbar and an applied voltage amplitude of 1.8 kV. Furthermore, the dissipated power obtained by model calculations for different values of γ and εr together with the measured power in dependence on the pressure is given.

Electrical characteristics of atmospheric-pressure DBD in argon with small admixtures of TMS - measured and calculated data

A time-dependent, spatially one-dimensional fluid-Poisson model has been applied to analyse the impact of small amounts of tetramethylsilane (TMS) on the discharge characteristics of an atmospheric-pressure dielectric barrier discharge (DBD) in argon. Based on an established argon kinetics, it includes a reaction kinetics for TMS, which has been validated by measurements of the ignition voltage at the frequency f = 86.2 kHz for TMS amounts of up to 200 ppm.

Comparison of six simulation codes for positive streamers in air

The dataset includes all the input and output files for the paper: Comparison of six simulation codes for positive streamers in air (https://doi.org/10.1088/1361-6595/aad768). Three test cases for axisymmetric positive streamers are described in the paper. The codes are of the finite volume or the finite element type, and they use both explicit and implicit time stepping. The computational domain and initial conditions are kept simple, so other codes can be compared relatively easily to the data published here.