O2

Validation of THz absorption spectroscopy by a comparison with ps-TALIF measurements of atomic oxygen densities

This data set contains the data shown in the corresponding publication in Applied Physics Letters (https://doi.org/10.1063/5.0160303). This publication presents a benchmark of THz absorption spectroscopy against a more established method. Atomic oxygen densities were measured with THz absorption spectroscopy and compared to those obtained from picosecond (ps) two-photon absorption laser induced fluorescence (TALIF) measurements on the same capacitively coupled radio frequency oxygen discharge.

Laser absorption spectroscopy for plasma-assisted thermochemical treatment - dataset

Laser absorption spectroscopy (LAS) was applied to investigate a low pressure DC-pulsed discharge in N2-H2 gas mixtures with addition of CH4 or O2. The discharge was maintained in an industrial-scale, active screen plasma nitrocarburizing (ASPNC) reactor with a steel active screen (AS). Spectroscopic lines of CH4, NH3, HCN, CO and H2O were recorded. The dataset contains the species densities for different gas mixtures.

The localised density of H₂O₂ in the effluent of a cold atmospheric pressure plasma jet determined by continuous-wave cavity ring-down spectroscopy

The data set comprises full cavity ring-down spectra and absorption coefficients obtained from on/off-resonance measurements, in order to determine the spatial distribution of H2O2 in the cold atmospheric pressure plasma jet kINPen-sci. Therefore, the plasma jet was operated with 3 slm Ar and 3000 ppm water, and was equipped with a gas curtain of 5 slm O2. To determine the effective absorption length, the H2O2 absorption was measured in radial direction. These radial fits had a Gaussian-like shape.

Terahertz absorption spectroscopy for measuring atomic oxygen densities in plasmas - Dataset

This data set contains the data shown in the corresponding publication in Plasma Sources Science and Technology (https://doi.org/10.1088/1361-6595/acb815). This publication presents the first implementation of terahertz (THz) quantum cascade lasers (QCLs) for high-resolution absorption spectroscopy on plasmas. Absolute densities of ground state atomic oxygen were directly obtained by using the fine structure transition at approximately 4.75 THz.